Есть проблема со временем.
Всё, чем мы его можем измерить, говорит, что оно идёт вперёд и не идёт назад.
Физики — они же простые парни. Если что-то работает, они на это смотрят, измеряют и говорят, как из этого построить катапульту.
И вот появляется такой Гильберт и спрашивает: а какого, собственно, хрена? У него там чуть более общий вопрос, и вообще их всего 23. Но важно то, что из-за него тысячи людей морщили голову вместо игры в Color Lines и Dwarf Fortress. Ну или во что там ещё играют в университетах.
Потому что время — это вообще штука из термодинамики, и, по идее, если не считать энтропию, должно спокойно ходить туда-сюда. Но почему-то так не делает.
Вот смешной ролик на хорошем русском про это, который многим срывает крышу.
Но теперь появилась модель.
Сразу — пока нерецензированная, но всё такая же красивая, как и многие другие хреново рецензированные вещи. А у нас такие тут уже были. Поэтому рассказываем.
Вопрос хорошо было бы решать с того, как уравнения гидродинамики возникают из движения атомов. В теории мы могли бы отслеживать каждую молекулу жидкости, но их что-то дофига. Уравнения для потока мы знаем, для взаимодействия частиц тоже. И вот надо как-то свести вместе. Если что, где куча частиц становится потоком, примерно там и появляется время.
Почему так: Ньютон говорит, что время работает в обе стороны, потому что упругие столкновения шаров всегда можно отмотать назад, и время — просто координата.
А Больцман любит выдавливать зубную пасту из тюбика и просить Ньютона запихать её обратно. Он так показывает энтропию, то есть математическое описание необратимости. Это мера неопределённости, которая не даёт системе самой вернуться в предыдущее состояние.
Иерархия процессов:
— Законы Ньютона для N сталкивающихся частиц (микроскопический уровень).
— Кинетический предел → уравнение Больцмана (мезоскопический уровень).
— Гидродинамический предел → уравнения жидкости (макроскопический уровень, Эйлера и Навье-Стокса, на которых тоже немало народа полегло).
В работе придумали математику, которая не сильно ломается от количества частиц. Раньше мы ловили стек оверфло и всё. А теперь можем примерно прикинуть.
Тяжелее всего давался переход от Ньютона к Больцману, особенно, если надо больше пикосекунды. Прошлая работа частично решила эту проблему для ряда случаев. Там, где вы встречаете посреди формул слова "банально" (а они там часто встречаются) — это они как раз передают приветы всем теоретическим физикам до них и себе в прошлом.
А в этой работе они связывают все уровни.
Физикам внутри будет интересна концепция длинных связей и интервалов времени между столкновениями, математикам — эксцесс-функция. С ними смогли посчитать вероятности столкновений частиц точнее и сравнить разные сценарии. Плюс поверх этого всего положили алгоритм, который разрезает проблему большого количества столкновений на части и кластеризует.
И вот поскольку тут из миллиона Ньютонов выводят одного Больцмана, нашлась точка, где это работает. Это возникновение необратимости во времени вблизи равновесия. Представьте, что вы кидаете мешок с миллионом игральных кубиков. Каждый из них отдельно можно рассчитать, и можно сказать, что его движение обратимо. Но когда их такая куча, то возникает очень много шума в системе, и эта случайность настолько сильно взаимозависима (там чуть ли не каждый влияет на каждого в каждый момент), что просчитать всё это становится сложно. Хотя каждый отдельный кубик подчиняется обратимым законам, статистическое поведение огромного количества кубиков приводит к необратимости. Хаос и случайность на макроскопическом уровне создают направление времени, хотя на микроскопическом уровне её нет. Так вот тут показывают, когда куча отдельных кубиков превращается в мешок, который можно обработать только статистически, но не рассчитать в той симуляции, где мы живём )
Напоминаем, что такие работы следует употреблять с особой осторожностью, но красиво же!
За наводку спасибо @x7CFE
--
Вступайте в ряды Фурье! Двухмерный ёж причёсывается в любом направлении. Трёхмерный ёж принципиально не причёсывается.
custom: 16
🔥: 177
❤: 79
👍: 44
🤯: 16
✍: 12
🤡: 3